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Abstract

A simple theoretical approach to calculation of dynamic response of local stiff linear polymer chain in semidilute solutions of high
viscosity solvents is presented. Using an extended version of the bead—spring hopping model proposed by Jones et al. [J Polym Sci, Phys Ed
1978;16:2215], the dynamic parameters such as: the relaxation time spectra, dynamic shear viscosity n(w)/c,, complex elastic modulus
G'(w) and dielectric constant &(w) were calculated in the non-free-draining limits. They are shown to be dependent on the polymer
concentration ¢, and the solvent effective viscosity m.y. This relationship is compared with experimental data published elsewhere.

© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The work presents a theoretical approach to dynamics of
linear local stiff polymers in semidilute solutions. It is a new
look on the behaviour of vinyl polymers-like polystyrene in
solutions of high viscosity solvents such as decaline,
aroclor, buthyl phtalate, etc., where at temperatures lying
a little above the glass-transition temperature 7, the diffu-
sional arrangement of the polymer chains takes place [1—4].

The experimental data published elsewhere [5,6] show
that in non-theta conditions viscoelastic parameters such
as the dynamic shear viscosity n(w) and complex elastic
modulus G*(w) of the polymer are quantitatively consistent
with those calculated from bead—spring model. The relaxa-
tion time spectrum observed at low frequencies in the
system considered is shifted due to the finite polymer
concentration and the rest of modes behave as if in infinite
dilution.

Hess et al. [7] and Muthukumar and Freed [8] on the basis
these facts have carried out calculations for dynamics of the
polymers in solutions of finite concentration dissolved in
ordinary solvents. The results presented in the citied papers
show that molecular approach to the problem is a good tool
for description of viscoelastic properties of the system. It is
confirmed by the results presented in literature [9,10].

We attempt to solve this problem for local stiff linear
polymers dissolved in high viscosity solvents using a devel-
oped version of the Jones’ bead—spring model previously

applied to calculation of the single polymer chain dynamics
in infinite dilute solutions [11,12]. In addition to this
approach the hydrodynamic polymer—polymer interactions
are considered now.

All calculations are carried out in the non-free draining
limit with respect to intra and interpolymer chain interac-
tions mentioned above. Under these assumptions the
dynamic shear viscosity m(w), complex elastic modulus
G"(w) and dielectric constant £(w) have been calculated.

2. Description of the model

The model applied is the hopping model described else-
where [10—12] concerning now the dynamics of the system
of (N + 1) beads defined by monomeric units of the poly-
mer immersed in mixture of (N — 1) beads familiar systems
dispersed in a good solvent. They interact with the related
system by friction and hydrodynamic effect. This fact as
well as solvent behaviour are incorporated through such
elements as the global bead friction coefficient f and hydro-
dynamic parameters.

So, the related model is visualized, as follows:

A set of an infinite rods A;_ |, A,, Ay, etc. fixed in space
lies parallel to the y axis, the distance between them in plane
xz 1is, respectively, equal to a. Each of these rods is
surrounded by « infinite rods AF fixed in their vicinity and
parallel to the y axis. They are distributed randomly in the
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Fig. 1. An illustration of the model: (a) view of the model in space; (b) its view in the Y direction; and (c) project onto the xz plane.

plane xz. The beads are hung on the rods and they are able to tion forces, the dynamics can be described by the system of
slide along each of them. The beads hung on the uniform both equations Langevin and diffusion.

rods are connected by spring-like segments of the equili-
brium length greater than a. Moreover, the beads hung on
the rods fixed in their vicinity are held at equilibrium
distance greater than r., being equal r=a.

An equlibrium conformation of the beads is a zigzag
pattern as is shown in Fig. 1. The distribution of the beads
at equilibrium state is governed by one-dimensional AP, ..., YN, 1) NoX gue
random-walk statistics. Also, the angles A;_ ;A5 Ay, as — a Z Z gy’ 6]
well as angles Aiﬁ'_l A,.B AiB s 1» etc. are random in plane xz.

Because the rods simulate a bond-angle constraints of the where
polymer chain backbone, the related motion of the beads in

s 1 6U
the Y direction is intended to represent a change of confor- Jr=—= <P ) Z PT, (
mation via rotation. Its amplitude is substantially dependent AN
on dynamic rigidity of the « chain being obtained by inter- (

3. The diffusion equation formula

Dynamics of the model described above is governed by
the following equation

alnP
T2 )
Y

m##n

dlnP
kriﬁ), 2)

bead potential defined by double-well function U(by), — Z ZPT“B
ay;

where b), is by, =y, — ys_1, and y, is a coordinate of the pra i "
nth bead.

The system is immersed in a mixture of high viscosity N N
solvent and other systems dispersed with which the beads U= Z Z UG® —ye)), 3)
interact via friction and by hydrodynamic effect. It is =1 n=1
obtained by the Stokes friction coefficient f and preaveraged
Oseen tensor, respectively. The friction coefficient is 1 < 1 > B 1 < 1 > @

o
6T Nt

expressed now by the effective solvent viscosity m.g being Tom =

defined as a sum of the solvent shear viscosity 1 and vis-

cosity associated with rotation of solvent molecules in the The function U represents the internal energy of the model,

system. T, is the hydrodynamic matrix element characteristic for
Because the beads are put in motion by thermal fluctua- the single « chain, TZB is the hydrodynamic matrix element

OT Merr \ Yom & yoP
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specific for interactions between chains « and (3. The coef-
ficient f'is the friction bead coefficient defined now, as

f = 6TrncffR’ MNeff = Ms + CkTTr’ (5)

where 7 is the solvent shear viscosity, R is a radius of the
bead, ¢ denotes a concentration of solvent molecules rotat-
ing in the system, k is the Boltzman constant, 7 means
temperature, 7, is the relaxation time of the solvent mole-
cule [13]. Putting the distribution function P given by

P=c Y oo ((bP 1p(1b2 ), 1) (6)

into Eq. (1) and introducing into it the following variables

S T e (7
m=1
we have
f ap 0 a @ " a o
+ +
o = LB + LB b ) + L)
+ (b5 BED | ®)
where
oY 1 [ o*u 1 (U \?
0 o _ - | ==
Ldonh = a; ;{ab‘ﬁ 2kT[ b2 2kT(ab;7) ’
€))
N 2
L ({bg’bﬂ‘Fl = { ana
220 e,

1 YU 1 U U
2kT \ 0bgabe,,  2kT aby abl, )’

(10)
” N N N
C(fred) -3 3 > ]

L 1 *U 1 oU oU
24T \ ab%abe,  2kT abe abe | |

(1)

=

N

/// 8 N N N 2
vty =ry 35 St

B=1 a=1 i=1 n=1

1 *U 1 oU oU
+ P P —
2kT abaab’3 2KT b3 opP

9? 1 U oU
3 s a5 (12)
abgaby,,  (2kT)= aby aby, |

Eq. (8) performed above is characteristic for many-
particle system dynamics and is similar to that considered
in Ref. [11]. Its right-hand side is taken in the next steps as a
diffusional operator L.

4. The configuration interaction method

Eq. (8) is a form similar to that of the Schrodinger equa-
tion commonly encountered in quantum mechanics. Its
right-hand side is expressed as the sum of the stationary
part L°({b%}) and three interaction parts: L'({b%,b%1}).,
L"({b%,b%}) and L" ({b%, bP}). Due to the quantum method
the function p can be built up as a linear combination of
sums constructed from the self-functions &;(by;) of the
operator LO({b,‘;‘}). At boundary conditions introduced for
a closed loop polymer chain conformation so that the bead
n = 0 is identical with the bead n = N, the sums mentioned
above are defined, as

Z Z b)) e,

a—l n=1 (13)

K= Em,m ==*1,...,N,
N

V({u}.K) =

where ¢({u, }) stands for a single product function of N¢’s
one for each b, in which a certain subset specified by {u; }
consists of the functions &(by) for 1> 0, describing the
state of b, excited to 1 level in the a chain, K denotes the
wave vector specifying the translational symmetry represen-
tation of the diffusional operator L to which the state
W({u},K) belongs. The function ¢({u, }) may be then
written

d({un ) = |&by)) (14)
and
d{ i D) = |E(B)Ep (b)) (15)

The eigenfunctions of the diffusional operator L may be then
found by expanding in terms of the {’s

pp(K) = > a, (K)W({u},K). (16)
p=1

The suffix p together with the wave vector K specifies an
eigenfunction of the operator L. If N is large, K approxi-
mates to a continuous variable and p specifies a band of
eigenvalues A,(K) corresponding to the eigenfunctions
pp(K). At p = 0 the p function is becoming to be the equi-
librium state solution

po = e P po(b3PY) = |0BD... &b (B Y. (1)
This function fulfils the following equation:
Lpo =0, (18)

where L is the diffusion operator expressed by the sum of
the operators  L({by)), L'({bj.byi ). L'(by. by ),
L"({b2, blﬁ}) and p, is a gaussian expression. L’s properties

exhibits the equation

Lp = Ap. (19)
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Table 1

Sum-rule contributions calculated according to Eq. (21) and the Kramers formula for a simple double-well potential at 7. = 1.0m, (= 2.5 cP)

Eu[kT] (o w3 X0 = (&11b]&) X30 = (&bl&o) Xt ;X3 o X7o + 03X3
5 1.4918x 1072 10.582204 0.9834357 —0.2268687 0.0144279 0.5496100 0.5640379
8 1.4842x 1073 16.104875 0.9992433 —0.2433440 0.0014820 0.9536709 0.9551529

10 17160 x 107* 20.024483 0.9998825 —0.2223652 0.0001716 0.9901366 0.9903082

13 0.2391 % 10~* 25.999046 0.9999578 —0.1958321 0.0000239 0.9970689 0.9970928

5. Relaxation time spectrum

Relaxation time spectrum of the dynamics observed at
double-well potential of the barrier height E, much more
greater than kT is possible to calculate from Eq. (8) by
integrating both-its sides using the function p constructed
from the &, functions defined, as follows
B= =0 A = =0k - X Q0)

21 N XAl T XB1) 20+1 N2 XAl — XBl)

where Ya;, xg; are the eigenfunctions of the harmonic oscil-
lator type centered at points A and B and completely sepa-
rated in space. The functions &3, &34 are, respectively,
even and odd eigenfunctions of the L° operator describing
at [ = 0 the degenerated state w; = wy, = 0. However, at
1>0 they are describing states of the b, segment in
damped oscillations within each well. This fact corresponds
to states of the model due to the motion.

As E is reduced, the degeneracy effect disappears and the
states w, w, are lifted. In consequence of the by segment
escapes over an energy barrier E, > kT from position A
to B. The state w is a ground state of the system described
by the symmetric functions &;'. On the other hand, the state
of eigenvalue w is excited state of the system described by
antisymmetric functions &' representing redistribution of
bead density between positions A and B. The bead relaxes
by diffusion over an energy barrier Ey, and the value w,
corresponding to frequency of the bead hopping is obtained
by the Kramers formula [14]. Independently to this relaxa-
tion the bead is governed by librational modes of the
frequency w; = w,. All frequencies are subjected to the
sum rule for the oscillator strength written in general
form, as

Z w(&lbl&Y'= 1. (21)

=1

Behaviour of the latter formula is illustrated by the data
presented in Table 1. The data have been calculated for a
simple double-well potential of an energy barrier height E,
varied from 5 to 13kT.

Application of formula (21) to Egs. (8) and (9) leads to
the following equation

s ZLO(b

a=1 n=1

<‘I'*(l’,1()

> = —w;8nn'8aBsll’,

(22)

where the functions ¥ (/, K) are expressed now throughout
functions (20) put for the functions ¢ in Eq. (13) and w, is
an angle self-frequency of the model at /th excitation. The
same approach applied to calculation of the matrix elements
(U1 K)IL'({ (b, b NP K)) gives

(v S ZL(b b0
a=1 n=1
2 N N a a
= N2 Z Zl(<§l’(bn ab“ &o(by >
><<§,(bff+l) YA §o(bn+1)>
n+1
+(Eb] 3o ) (3)
n+1
(aen| 5z |en)) cosk

N
—w 2> R CAA (CRCATAI)
x(&bi b o)
# (&bl o) (EeDlbiIEED) ) cosk
= wran{ &bl bl ) cosk

where the following relationship

(&1L, 551180) = 2 - |0 = w(&lbilé0) 24)

ab“
has been used. In order, two next matrix elements
(P, K)|L"|Y (1, K)) and (¥ (', K)|L"|¥(l, K)) calculated

according to the method described above are expressed, as
follows:

N N N
(W, K)| Z > D LBy b)Y K))
a=1 m=1 n=1

= —wpahl{&y|b|& )& Ibl&)(1 — cosK), (25)
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Table 2

Influence of the hydrodynamic interaction on the band A];(K ) calculated from formula (31) for N = 1000 and energy barrier height Ey, = 13kT at several values

of the polymer swelling parameter and polymer concentrantion c,

MKy x10°

Kx 103 CPZO,.’Z‘:O cp:O.S,szO cp:l.O,f;:O CP:O,a:O.Z cp:O.S,f;:O.Z CPZI.O,SZO.Z
0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.141 16.750 25.442 32743 13.381 19.313 24.845
6.283 87.313 132.530 170.614 71.170 102.798 132.301
9.425 249.355 378.662 487.569 200.834 290.226 373.614
12.566 500.472 760.147 978.854 406.042 587.908 755.627
15.708 887.147 1347.692 1735.580 715.828 1034.882 1332.507
18.849 1383.530 2101.976 2707.080 1120.860 1620.638 2086.849
and and wide
N N N N "
* !
WY DS Lk, b K)) M(K) = w3[1 + h(I + ¢, VI')(1 = cosK)]. (31)
B=1 a=1 i=1 n=1
- . / .
= —cpVaypwhl(&|bl& )& blé)(1 — cosK), (26) For N = 1000 the integral I' may be approximated to the

where ¢, means the polymer concentration, V is the volume
unit element and 7 is the hydrodynamic parameter. Its value
is calculated from the formula derived according to the
Kikwood—Riseman theory [11,15] with respect to Ptisyn—
Eisner [16] and Muthukumar—Freed [8] approximations. It
is expressed by

/127T3bneffN(l+a)/2 ’
I v A+8)2 Y cos(t) i
2 o A+an
(28)

dr dt’,

]/_ TV (1+e)/2 rY COS(Z‘)
- 7 0 (t(l+s) +IIN75)1/2

where I and I’ are the Fresnel integrals. The sum of the
formulae (22), (23), (25) and (26) corresponds to the inte-
gral of right-hand side of the diffusion Eq. (8). Its diagonal
elements are equal to the relaxation time spectrum A (K)

N'(K) = {1 + (I + c,VIho&|b|é) .
(29)
—h[1 + (I + ¢,VI"lwgé |bl&) cosK}

characteristic for dynamic excitation of the model to / level.
In this case two bands: diffusional A?(K) and librational
/\?(K ) are considered. The first is associated with hopping
of the beads over an energy barrier Ey, and the second with
their liberation around equilibrium position. Its nature has
been previously described in detail [11]. At & equal to zero
both bands become the form characteristic for the free-
draining case and at E, = 10kT they are, respectively,
narrow

/\l = W (30)

integral I and the last expression becomes simpler. This fact
closely corresponds to the model. It is confirmed by the data
presented in Tables 1 and 2.

As, it is seen the band AY(K) quickly achieves higher
levels with increase of K values. This effect disappears
at K values lying above the point K,. In this range
/\?(K) increases slowly to higher levels involving
coupling effect between neighbour excited states [17].
It is not considered in this work. The dynamics is calcu-
lated for K lying within the range:0 < K <K, and ¢, <
cgr, where c];r is the polymer concentration at which
hopping effect in the polymer chain is not possible to
occur.

Under these conditions a contribution of the interpolymer
excluded volume effect to the dynamics is becoming to be
small and is neglected in the calculations.

6. Calculation of the dynamic shear viscosity 1(w)

The calculations of the viscosity 7n(w) are carried out
according to the Zimm method described in Ref. [18] by
the use of the standard perturbation theory. Due to this fact,
the master diffusion equation is considered now in the
perturbational form being obtained from Eq. (8) by introdu-
cing into it the following perturbation

N N
=g > > xl, (32)
a=1 n=1

where v? is the solvent velocity, g, is an amplitude of the
solvent velocity gradient g, w denotes angle frequency of
the perturbation, r means time and X, is the coordinate of
the nth bead in the « chain.

As the result of the mathematical operation carried out we
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Table 3

Contribution of the viscosity n(w)/c, and n3(w)/c, into the dynamic viscosity of the sytem n(w)/c, calculated according to Eq. (39) at £ =0 for N =

1000 (M = 10%), energy barrier E, = 13kT and several values of the polymer concentration c,
Log(w) =0 ¢, =05 =10

ni(w)/c, X 10" n3(w)/c, n(w)/c, ni(w)/c, X 10" n3(w)/c, 1 (w)lc, n1(w)/c, X 100 n3(w)/c, 7 (w)lc,
-7.0 57.440 1.199 1.199 57.440 0.804 0.804 57.440 0.604 0.604
—6.5 57.431 1.199 1.199 57.430 0.804 0.804 57.430 0.604 0.604
-6.0 57.341 1.199 1.199 57.333 0.804 0.804 57.326 0.604 0.604
—55 56.454 1.199 1.199 56.383 0.804 0.804 56.309 0.604 0.604
-5.0 48.889 1.199 1.199 48.362 0.804 0.804 47.827 0.604 0.604
—4.5 20.894 1.199 1.199 19.963 0.804 0.804 19.082 0.64 0.604
—4.0 3.106 1.199 1.199 2.905 0.804 0.804 2.722 0.604 0.604
-35 0.326 1.197 1.197 0.304 0.803 0.803 0.284 0.604 0.604
-3.0 0.033 1.182 1.182 0.030 0.798 0.798 0.028 0.602 0.602
have where
f (9p 0 a _ .« [ — l( 2>
T Z Z —(x,l — X l)aba + L°({b%}) (G = x— Dy — X)) 3400)- (38)

=1 n=

+ L'({by. b ) + L({b b))
+ L"({b, b Dlp. (33)

The function p is defined now, as follows

N N
(WAKI DD G = - )lpo)

a=1 n=1

MK) + i

/8
p=pot T EK Ez
34

Its application to the definition of the shear viscosity
given by

N N
niw) _ _&<Z ZF),gx;‘:>

p Mgn5 a=1 n=1
N, & X aU olnP
LT + Z(—(_a + k2 )> (35)
Mgn, = o Iy, Oy,

leads to the following expression

nw) _ B 7 onP
Cp - Z Z<( Xn xn l)( 6b“ ab,o{ )>

Mgnsalnl

V(l,K — X%
N ZZ< ( )%%(x 1)aba|Po)
Mg’r/g =4 M(K) +iw ’
(36)

where N, is the Avogadro’s number and M denotes mole-
cular weight of the polymer. After integration the last
expression takes the following form

w (& lpl&o)
)\H(K) +iw

n(w) af<b0> Z Z

, 37
c 6Mn, 4 7

p

Y(, K).

At conditions assumed above formula (37) becomes

n(w) _ Naf<b(2’> Z( n w%|<§3|b|§0>2)

c 6Mm), M(K) + iw

wi[(€,|pl&Y’

)\l +iw

p K

_ Mm@ m(w)

Cp ‘p

(39)

Its behaviour in function of the frequency w exhibit the data
collected in Table 3 and the curves shown in Fig. 2.

As it is seen, the component 7,(w)/c, introduces unex-
pectively small contribution to the viscosity n(w)/c,. Its
frequency-dependence typical for single bead relaxation
phenomenon is not dependent on the polymer concentration
¢, and does not apparently contribute to the dispersion
curves presented in Fig. 2. On the other hand, the second
component appears dominant and dependent on the polymer
concentration c,,. Its character is the Rouse—Zimm-like for
enough long polymer chain dynamics. It is reflected in shape
and position in the coordinate system of the discussed
dispersion curves. They are influenced by the polymer
concentration ¢, preserving Rouse-like character within
the frequency range: 1072107 Hz. All curves presented
above are frequency-dependent falling to zero with increase
of log w to 2.

7. The dynamic elastic modulus G*(w)

The complex elastic modulus G*(w) is the second
parameter characterizing viscoelastic properties of the
polymer [19]. Its value is determined by dynamic elasticity
of the polymer and can be calculated from the following
relationship

G'(0) = G'(w) +iG"(w) = iwn,[1 + n(w)lcy]l, (40)
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©

LOG(6Mnn(0)/N,<b*>f,c,)

LOG(0)

Fig. 2. Plot of log(6Mn(w)nJ/N, fo{b5) ¢p) vs. log w prepared for N = 1000
and several values of the polymer concentration ¢, equal to 0, 0.5, 1.0. The
curves shown represent the model calculations carried out according to
Egs. (39) and (5) with g = 2.5 cP.

where n(w) is the dynamic shear viscosity given by
Eq. (39), G'(w) denotes the storage elastic modulus and
G"(w) is the loss elastic modulus. The curves shown in
Figs. (3) and (4) exhibit behaviour of both modulae calcu-
lated for the model according to Eq. (39). They are plotted
as logG'(w) and log(G” — wny) vs. log w.

The plots presented below show that frequency-depen-
dence of both modulae G’ and G” are sensitive to change
of the polymer concentration ¢, within the range character-
istic for librational modes. This fact as well as relatively
slow increase of the mentioned modulae to higher level in
this frequency range exhibits the Rouse—Zimm character of
the model. It is corresponding to experimental data
published elsewhere [20].

8. The dielectric constant £(w)

The effect of electric field interaction with the system is
calculated according to the method used above starting from
the perturbation [11,13]

U=U- qz Zan,,, (41)

a=1 n=

where g is an elementary electric charge and E, is the local
electric field intensity.

Introduction of the potential U’ into Eq. (8) leads to the
following equation

ap
L0 0 + L0 b )

+ L"({b2,b2)) + L"({b2, b))

+ LV BEY) + LY (B, b)), (42)

n»>p

0

LOG(w)

Fig. 3. Logarithm of the storage elastic modulus log G’ in function of log w
for N = 1000, 1N equal to 0, 0.5, 1.0 and n, = 2.5 cP.

where L°({bj}), L'(by, bi.1). L"({b5. by }) and L" ({b5, b))
are the operators, respectively, obtained by Eqgs. (9)—(12). In
turn, the operators

LY ({by, by h)
and
LY (b3, bPY)
are given by
N N N
(43)

LY ({3, b))
g & & & & 4l 1 (U )
= HP — = )- — | 4
3k BZI ozg:l 1=Zl n=1 " kT ablﬁ ablﬂ ( )

where H,, and H:l)‘iﬁ are hydrodynamic matrix elements
written as

HEy = 8y + [T HEP = 828 + (T8 (45)

and FE is the intensity of the electric field applied to the
system

E=E,e". (46)

Due to these facts, the function p can be expressed by

vt S

Application of this function to the definition of the electric
polarization

Z Z (gby) (48)

a—l n=

(\1/(1, BILY + Lv|p0>

T o W(,K). (47)
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LOG(G"-w1e)

2 A 0 1 2
LOG(w)

-7 -6 -5 -4 -3

Fig. 4. Logarithm of the loss elastic modulus log(G” —wn,) plotted vs. log
. The curves presented were calculated for the same parameters as in
Fig. 3.

gives

2 WKLY + LY|p
o) =3 ( )
K 1

M) + o

N N
X(W(LK DD biloo)

a=1 n=1

2 2
_ 4 (1 + Vey)wll(1]b]&0)
© 3kT % ; MNU(K) + iw ’ “9)

where the matrix elements (W (I, K)|H|¥(l, K)) equal to 1
has been used. At conditions assumed above the last formula
becomes

1+ VCp)w1|<§1 |b|§0>|2

)\1 +iw

2
Mo
plw)= [
3kT %

(1+ VCp)w3|<§3|b|§o>|2
+ ] (50)

)\13{(1() +iw

where g is the dipole per unit length.
Then, the dielectric constant e(w) is given by

&w) =1+ p(w)

_ pa(1 + Vey) Z ( w (€ |b|§0>|2 n w3|(§3|b|§0)|2 )

3kT A+ i MK + iw

619

K

The curves shown in Fig. 5 are similar to those demon-
strated in Fig. 2 for the dynamic viscosity 1 (w)/c,. They
were prepared according to the data received from Eq. (51)
at the same conditions as those applied to calculation of the
viscosity. Due to this fact, the considered dipole relaxation

3

C,=0.0
2 05
3 1.0
s
T
T 11
Na
=
£
=
>
o 04
@
o
-
-1
7 E] 5 4 3 2 -1 0 1 2
LOG(w)

Fig. 5. Variation of log [3kTe(w)/p,(z,(] + Vcp)] as a function of log @
obtained according to Eq. (51) for ¢, equal to 0, 0.5, 1.0; N = 1000 and
n, = 2.5 cP.

seems to be closely similar to the relaxation of the visco-
elastic parameters discussed above. This fact confirm the
available experimental data [21].

9. Conclusions

A theoretical approach to the dynamics of local stiff vinyl
polymers-like polystyrene in semidilute solutions of high
viscosity solvents at finite concentration is presented in
this work. The calculations for the relaxation spectrum
Ajl, dynamic shear viscosity 7(w), complex elastic modulus
G*(w) and dielectric constant e(w) were carried out for the
hopping model proposed by Jones et al. [10] with respect to
intra and interpolymer interactions.

The results of these calculations show that the vinyl
polymers in high viscosity solvents such as decaline,
aroclors, etc. at concentration cp > c’;’ are able to change
the conformation via rotation and librational motions
around equilibrium position. The first process is obtained
by the narrow band A, characteristic for the single-bead-
Debye relaxation and the second process by the wide band
/\13{(K) specific for the Rouse—Zimm relaxation. Both
processes are diffusional and each other independent.
They are influenced by the effective solvent viscosity 7).
The second process represented by the band /\13'[(1() is
described for the wave vector K lying within the range
0 <K <K,.

Position and shape of the band A} (K) is determined by the
self-bead-frequency ws, the nearest-neighbour-interaction
specified by the wave vector K, intra and interpolymer inter-
actions. Due to this fact, this band is shifted into higher
frequencies in relation to position of its familiar form calcu-
lated in the free-draining limits. The polymer concentration
¢, introduces significant contribution to this effect. It is
reflected in behaviour of the viscoelastic parameters and
dielectric constant calculated for the model (Figs. 2-5).

The dynamic shear viscosity 1 (w)/c, drops down to
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lower level with increase of the polymer concentration and
falls to zero with increase of the frequency w up to 100 Hz.
The same behaviour is observed for the dielectric constant
e(w).

The complex elastic modulus G*(w) represented by the
storage G'(w) and loss elastic modulus G” (w) calculated
for the model appears less sensitive to change of the poly-
mer concentration ¢, than the dynamic viscosity and dielec-
tric constant. However, they also decrease to lower level
with increase of the polymer concentration.

All discussed quantities are unexpectedly mildly sensitive
to the single-bead relaxation process.
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